抽象代数学の一分野である環論において、秋月・ホプキンス・レヴィツキの定理 (Akizuki–Hopkins–Levitzki theorem) は半準素環上の加群において降鎖条件と昇鎖条件を結び付ける。(単位元を持つ)環 R は、R/J(R) が半単純でありかつ J(R) が冪零イデアルであるときに、半準素環 (semiprimary ring) と呼ばれる。ここで J(R) はジャコブソン根基である。定理の主張は、R が半準素環で M が右 R-加群ならば、3つの条件

  • M はネーター的
  • M はアルティン的
  • M は組成列を持つ

が同値であるというものである。半準素という条件がなければ、M が組成列を持てば M はネーターかつアルティンであるということしか言えない。

Charles Hopkins の論文 (Hopkins 1939) と Jacob Levitzki の論文 (Levitzki 1939) から定理は現在の形となった。そのためしばしばホプキンス・レヴィツキの定理 (Hopkins–Levitzki theorem) と呼ばれる。しかしながら、秋月康夫を含めることがある。数年早く可換環に対して結果を証明したからだ(Lam 2001, p. 55)。

右アルティン環は半準素であることが知られているから、定理の直接の系として、右アルティン環は右ネーター環でもある。同様の主張は左アルティン環に対しても成り立つ。これはアルティン加群に対しては一般には正しくない。ネーター的でないアルティン加群の例が存在するからである。

別の直接の系として、R が右アルティン環であるとき、R が左アルティン環であることと左ネーター環であることは同値である。

証明の概略

以下の主張の証明を書く:R を半準素環で M を左 R-加群とする。M がアルティン的あるいはネーター的であれば、M は組成列を持つ。(この逆は任意の環上正しい。)

J を R のジャコブソン根基とする。Fi = Ji − 1M/JiM とおく。すると R-加群 FiR/J-加群と見ることができる。J は Fi の零化イデアルに含まれているからである。各 Fi は半単純 R/J-加群である、なぜならば R/J が半単純環だからである。さらに、J は冪零イデアルであるから、Fi のうち 0 でないのは有限個しかない。M がアルティン的(あるいはネーター的)であれば、Fi は有限の組成列を持つ。Fi の組成列をつないでいって、M の組成列を得る。

グロタンディーク圏において

定理の一般化や拡張がいくつか存在する。1つはグロタンディーク圏と関係するものである。G がアルティン的生成子を持つグロタンディーク圏であれば、G のすべてのアルティン的対象はネーター的である。

関連項目

  • アルティン加群
  • ネーター加群
  • 組成列

脚注

参考文献

  • Cohn, P.M. (2003), Basic Algebra: Groups, Rings and Fields, ISBN 978-1-4471-1060-6 
  • Hopkins, C. (1939), “Rings with minimal condition for left ideals”, Ann. of Math. 40 (2): 712–730, doi:10.2307/1968951 
  • Lam, T.Y. (2001), A First Course in Noncommutative Rings (Second ed.), Springer-Verlag, ISBN 0-387-95183-0 
  • Levitzki, J. (1939), “On rings which satisfy the minimum condition for the right-hand ideals”, Compositio Math. 7: 214–222, http://www.numdam.org/item?id=CM_1940__7__214_0 

【高校数学+】平均値の定理とロピタルの定理【解析】 YouTube

正弦定理 証明と例題を用いての定理の使い方【高1の三角比】 岩井の数学ブログ

Hodgkinhuxley model(ホジキンハクスレー方程式)

一分半看懂「实数六大基本定理」 哔哩哔哩

研究 │ 関西学院大学理学部数理科学科 確率解析・数理ファイナンス研究室